

Measuring Dry Film Thickness (DFT) on Concrete Substrates

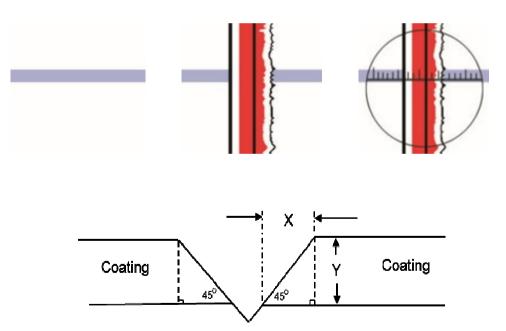
Craig Woolhouse

Elcometer UK

DFT on Concrete Substrates

- Traditional measurement techniques
- Advances in NDT measurement technology
- Use of the Elcometer 500 Coatings on Concrete Gauge
- Things to look out for when measuring the coating thickness on concrete substrates
- How to more effectively manage the results

Traditional Measurement Techniques


- Mechanical device PIG Gauge
 - Destructive
 - Difficult to interpret results scale range in the microscope

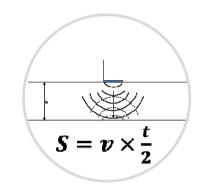
Paint Inspection Gauge (P.I.G.)

Substrate

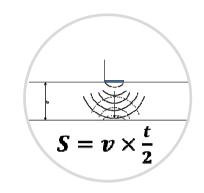
X = Y

Current Measurement Techniques

• Ultrasonic devices – Non Destructive

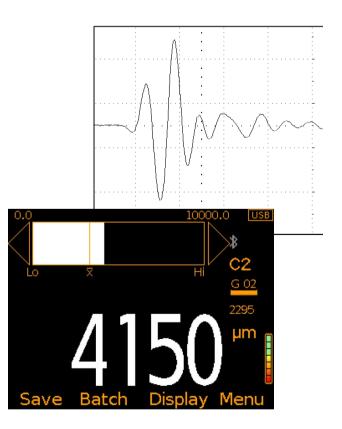


Ultrasonic Measurement $S = v \times \frac{t}{2}$ Where s = substrate thickness v = the velocity of sound in the substrate material t = the measured round trip time (pulse to echo)


Ultrasonic Measurement

- t is measured by the gauge
- S is the calculated thickness
- v (the velocity of the coating) is 'inputted' by the user
- so if you set up the gauge with the wrong speed of sound, the thickness will be wrong

Ultrasonic Measurement



- t is measured by the gauge
- S is the calculated thickness
- v (the velocity of the coating) is 'inputted' by the user
- Different coatings (Epoxy, Acrylic, PVC, rubber, etc) each have a different speed of sound, so for an accurate reading, you cannot simply have a single speed of sound for all coatings

Ultrasonic Measurement

- Metal Substrate DFT measurement isn't daunting, so why should ultrasonic DFT be any different?
- It doesn't need to be. You shouldn't have to set up gates or thresholds, or worry about what gain or what sort of A-Scan graph you have, the gauge should do this for you automatically
- Calibrated correctly, the gauge should only give you the correct answer

- There are 4 options for calibrating an ultrasonic gauge
 - 1. Use a generic value for all coatings (not recommended)
 - 2. Select the appropriate coating from a pre-defined material selection (generic speed from pick list)
 - 3. Input the known speed of sound of the coating
 - 4. Measure a sample of known thickness

- There are 4 options for calibrating an ultrasonic gauge
 - **1**. Use a generic value for all coatings (not recommended)
 - 2. Select the appropriate coating from a pre-defined material selection (generic speed from pick list)
 - 3. Input the known speed of sound of the coating
 - 4. Measure a sample of known thickness

- But how do you know what the speed of sound is for the coating?
- Where do you get a sample of known thickness from?
- A Coating Calibration Mould answers both of these questions. The CCM is a metal mould allowing for the creation of a known thickness of coating

• The CCM mould is filled with the coating under test

• A scraper is used to level a predetermined wet film thickness of coating

 Once fully cured a DFT gauge is used to accurately measure the coating thickness and ...

- The ultrasonic gauge can now be calibrated accurately on a sample of known thickness
- And used to determine the coating's speed of sound, which can be stored in the gauge for later use, or used to calibrate other gauges

Elcometer 500 Gauge Usage

- Calibrate by setting the material speed of sound
- Select the correct probe type (C1 or C2)
- Take and store readings recognising that
 - The gauge signal strength needs to be 'in the green'
 - If no reading occurs then carefully move the probe over the substrate until a reading is obtained
 - Store the reading in the gauge memory
 - Download the data to ElcoMaster

Elcometer 500 Gauge Advantages

Fast

- Rugged, Reliable and Ergonomic gauge design
- Intelligent
 - New probe tip is field replaceable
- Ease of Use
 - Simple Menu and On Screen Instructions
- Powerful
 - Connects to ElcoMaster reporting software

Result Reporting

 Ultrasonic measurement of coating thickness is covered by ASTM D6132-13 and SSPC-PA 9

These standards define the method, the procedure and the reporting requirements

Result reporting to SSPC-PA 9

- SSPC-PA 9 is a recommended procedure for measuring DFT using Ultrasonic Gauges
 - a minimum of three (3) gage readings shall be made for each spot measurement of the coating.
 - an area measurement is obtained by taking five (5) separate spot measurements each 10m² up to 100m²
 - For areas between 30 and 100m² select 3 random 10m² areas
 - For areas greater than 100m² measure as above for the first 100m² and one 10m² area per 100m² thereafter

Result reporting to ASTM D6132-13

- ASTM requires the following to be reported
 - Type of coating and substrate
 - Instrument used
 - manufacturer, model number, serial number and calibration date
 - Type of coating thickness or reference standard
 - Together with method of accuracy verification
 - Mean and standard deviation of readings
 - Operator I.D. and inspection date

Result Reporting

Modern digital inspection gauges enable the operator to

- Save the readings in the gauge
- Transfer the readings from the gauge to the PC/Phone
- Analyse the data carrying out any calculations or statistical analysis required by the Standard
- Produce and email a report instantly

Result Reporting

All the data required by the customer can be automatically transferred by the gauge to the software and directly onto your report... all at the click of a button

Conclusion

- You don't need to panic at the mention of Ultrasonic DFT gauges as they don't have to be complicated!
- Measuring coatings on concrete has been made significantly easier, faster and more accurate with the introduction of new ultrasonic gauges and through the use of coating calibration moulds
- Ultrasonic DFT results on concrete no longer need to be viewed with scepticism

Now for a short demonstration.....