

Redefining Electrochemical Measurement

Interface 1010T Potentiostat/Galvanostat/ZRA and Starter Pack

If you're new to electrochemical techniques or perhaps are teaching an analytical chemistry course and want to incorporate a couple electrochemical techniques, we have the ideal potentiostat and accessory kit for you.

The Interface 1010T Potentiostat/Galvanostat/ZRA and Starter Pack is designed to help people understand and start making measurements sooner. The kit includes:

- Interface 1010T Potentiostat/Galvanostat/ZRA
- Five experiments
- Student and Teacher's manuals (digital)
- Cells and electrodes

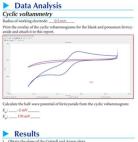
Experiments have been chosen to help you learn a variety of techniques from cyclic voltammetry to pulse techniques to corrosion techniques and even electrochemical impedance spectroscopy.

Experiment	Goal
Cyclic Voltammetry	Determine the redox potential and diffusion coefficient of potassium ferricyanide.
Determination of Working Area of an Electrode	Calculate the electroactive area of the WE. Understand concentration distance profiles. Familiarization with the Cottrell and Anson equations
Comparison of Pulse Techniques	Compare different pulse techniques. Determine amount of copper in an unknown water sample.
Corrosion of Mild Steel at different pHs	Determine the corrosion rates for mild steel at different pHs.
Electrochemical Impedance Spectroscopy	Perform EIS on a network of resistors and capacitors. Model EIS data using an equivalent circuit to extra resistor and capacitor values.

Our student and teacher manuals are ideally laid out with goals of each experiment, necessary equipment, reagents and chemicals (including instructions for preparation).

Determination of the Working Area of an Electrode Goals Understand concentration distance profiles Become with familiar with the Cottrell and Anson plots Learn how to use the Cottrell and Anson equations to calculate the active su face area of the working electrode. **Experimental Apparatus**

Reagents and Chemicals Solution Preparation:


- 03.43 K.u. Weigh out 0.74 g KCl for every 100 mL of water needed. 100 mL of solution provides 80.90 aliquots of 1 mL each. 2 mM potassium ferricyanide in 0.1 M KCl Weigh out 0.74 g KCl and 0.06 g potassium ferricyanide for every 100 mL of water needed. 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of solution provides 80.90 aliquots of 1 mL each 10m L of 10m L

- Purge both solutions with an inert gas (Blanket each solution with the inert gas Stopper immediately.

Run the blank soluti	on.
a. Turn on the pote	entiostat
	Framework software on the computer.
	tiostat is connected, go to Experiment > Physical Electr dic Voltammetry.
	ental fields in the Cyclic Voltammetry window to the 2.6, with a file name CV_Blank.
Sc Vallacenetry	
Default Dave Dest	ose CE Cancel
Petat	F IPC1000-05045
Test Identifier	Cyclic Voltamentry
Output File	SLANK - STA
Electrode Area (om^2)	0.0014
Notes	DIE ME-D4, CE-C, DE-Ag/AgC1 0.1 M ECL
Initial E (V)	(1.) S we first C we for
Scan Limit I (V)	-0.25 W ve Hand C ve Hoo
Scan Limit 2 (V)	0.5 # vs Eref C vs Eco
Final E (F)	0.5 F vs Red C vs Roo
FORD PAIR (NT/s)	10
Step Size (NT)	[1
Cycles (E)	1
1/E Range Mode	Flato C Fixed
Max Ourrent (sA)	[1.e-005
Strong	Filtre CEE
PF Corr. (she)	50
Equil. Time (s)	0
Init. Delay	F off
Conditioning	F off
Despling Hode	C Fast # Soise Seject C Surface
Advanced Fetat Setup	l' off
Electrode Datum	□ oer

We also include detailed step-by-step procedures to help you become familiar with operation of the instrument and software. This helps keep the focus on learning the material versus having to simultaneously learn the software.

Each manual also includes questions regarding data analysis while the teacher's manual includes the expected results of the experiments as shown on the right. You can see what each student should be seeing and also what they should be calculating in their data workup.

734 Louis Drive

Upgrade to a full Research-Grade Potentiostat

The Interface 1010T can be upgraded to a fully-capable research-grade potentiostat at any time. The in-field upgrade allows you to go from an Interface 1010T to an Interface 1010E, growing in capabilities as your needs grow.

System Information

Ordering information	PN
Interface 1010T Potentiostat/Galvanostat/ZRA	992-00171
with Starter Pack	

This starter pack is configured using a number of our standard cell kits and electrodes. Below is a list of the individual components contained within the system.

Item	Part Number	Quantity
Interface 1010T	992-00126	1
Screen-printed	990-00420	1
electrode stand	990-00420	
Carbon WE SPE	935-00120	6
PTC1 Paint Test Cell	990-00197	1
(w/o RE)	990-00197	
Mild steel sample	820-00141	2
1 uF capacitor	240-00015	1
2.2 uF capacitor	240-00017	1
20 ohm resistor	100-00040	1
100 ohm resistor	100-00011	1

IFC1010T Starter Pack 11Nov2020© Copyright 1990-2020 Gamry InstrumentsAll specifications subject to change without notice.734 Louis DriveWarminster, PA 18974 USA+1 215-682-9330Fax: +1 215-682-9331sales@gamry.comwww.gamry.com